Practice Set 7.3

(1) For class interval 20 — 25 write the lower class limit and the upper class limit.

Solution:

The lower class limit is 20 and the upper class limit is 25.


(2) Find the class-mark of the class 35-40.

Solution:

Class Mark = \(\displaystyle \frac{\text{Lower Class Limit + Upper Class Limit}}{2}\)

∴ Class Mark = \(\displaystyle \frac{35 + 40}{2}\)

∴ Class Mark = \(\displaystyle \frac{75}{2}\)

∴ Class Mark = 37.5


(3) If class mark is 10 and class width is 6 then find the class.

Solution:

Let, the lower class limit be L and the upper class limit be H.

Class Mark = \(\displaystyle \frac{\text{Lower Class Limit + Upper Class Limit}}{2}\)

Class Mark = 10 ... (Given)

∴ \(\displaystyle 10 = \frac{\text{L + H}}{2}\)

∴ \(\displaystyle 10 \times 2 = \text{L + H}\)

∴ 20 = L + H

i.e. L + H = 20 ... (i)

Also, Class Width = 6 ... (Given)

∴ H − L = 6

∴ H = 6 + L

i.e. H = L + 6 ... (ii)

Substituting the value of H in (i),

L + H = 20 ... (i)

∴ L + L + 6 = 20

∴ 2L + 6 = 20

∴ 2L = 20 − 6

∴ 2L = 14

∴ \(\displaystyle L = \frac{14}{2}\)

∴ L = 7

Substituting the value of L in (ii),

H = L + 6

∴ H = 7 + 6

∴ H = 13

Therefore, the class is 7-13.


(4) Complete the following table:

Classes
(age)
Tally Marks Frequency
(No. of students)
12 - 13 \(\enclose{downdiagonalstrike}{||||}\)     
13 - 14 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||} ||||\)     
14 - 15            
15 - 16 \(||||\)     
\(\displaystyle N = \sum{f} = 35\)

Solution:

The completed table is given below:

Classes
(age)
Tally Marks Frequency
(No. of students)
12 - 13 \(\enclose{downdiagonalstrike}{||||}\)  5 
13 - 14 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||} ||||\)  14 
14 - 15 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||} ||\)  12 
15 - 16 \(||||\)  4 
\(\displaystyle N = \sum{f} = 35\)

(5) In a ‘tree plantation’ project of a certain school there are 45 students of ‘Harit Sena’. The record of trees planted by each student is given below:
3, 5, 7, 6, 4, 3, 5, 4, 3, 5, 4, 7, 5 , 3, 6, 6, 5, 3, 4, 5, 7, 3, 5, 6, 4, 4, 3, 5, 6, 6, 4, 3, 5, 7, 3, 4, 5, 7, 6, 4, 3, 5, 4, 4, 7.
Prepare a frequency distribution table of the data.

Solution:

The completed table is given below:

Class
(No. of saplings)
Tally Marks Frequency (f)
3 \(\enclose{downdiagonalstrike}{||||} \enclose{downdiagonalstrike}{||||}\)  10 
4 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||} |\)  11 
5 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||} |\)  11 
6 \(\enclose{downdiagonalstrike}{||||} ||\)  7 
7 \(\enclose{downdiagonalstrike}{||||} |\)  6 
\(\displaystyle N = \sum{f} = 45\)

(6) The value of π upto 50 decimal places is given below:
3.14159265358979323846264338327950288419716939937510
From this information prepare an ungrouped frequency distribution table of digits appearing after the decimal point.

Solution:

The completed table is given below:

Digit Tally Marks Frequency (f)
0 \(||\)  2 
1 \(\enclose{downdiagonalstrike}{||||}\)  5 
2 \(\enclose{downdiagonalstrike}{||||}\)  5 
3 \(\enclose{downdiagonalstrike}{||||} |||\)  8 
4 \(||||\)  4 
5 \(\enclose{downdiagonalstrike}{||||}\)  5 
6 \(||||\)  4 
7 \(||||\)  4 
8 \(\enclose{downdiagonalstrike}{||||}\)  5 
9 \(\enclose{downdiagonalstrike}{||||} |||\)  8 
\(\displaystyle N = \sum{f} = 50\)

(7)(i) In the tables given below, class-mark and frequencies is given. Construct the frequency tables taking inclusive and exclusive classes.

Class Mark Frequency
5 3
15 9
25 15
35 13

Solution:

For the class having class mark 5, Let L be the lower class limit and H be the upper class limit.

Class Mark = \(\displaystyle \frac{\text{Upper Class Limit + Lower Class Limit}}{2}\)

\(\displaystyle \therefore; 5 = \frac{H + L}{2}\)

\(\displaystyle \therefore; 5 \times 2 = H + L\)

\(\displaystyle \therefore; 10 = H + L\)

i.e. H + L = 10 ... (i)

And Class Width = 35 − 25 = 25 − 15 = 15 − 5 = 10

∴ H − L = 10 ... (ii)

Adding (i) and (ii):

H + L = 10 ... (i)
+ H L = 10 ... (ii)
2H = 20

\(\therefore; \displaystyle H = \frac{20}{2}\)

∴ H = 10 ... (iii)

Substituting the value of H in (i):

H + L = 10

∴ 10 + L = 10

∴ L = 10 − 10

∴ L = 0 ... (iv)

∴ The first class is 0 - 10

∴ The other classes are: 10 - 20, 20 - 30, 30 - 40

∴ The exclusive classes are as follows:

Class Class Mark Frequency
0 - 10 5 3
10 - 20 15 9
20 - 30 25 15
30 - 40 35 13

And the inclusive classes are:

Class Class Mark Frequency
0 - 9 4.5 3
10 - 19 14.5 9
20 - 29 24.5 15
30 - 39 34.5 13
40 - 49 44.5 ...

(7)(ii) In the tables given below, class-mark and frequencies is given. Construct the frequency tables taking inclusive and exclusive classes.

Class Mark Frequency
22 6
24 7
26 13
28 4

Solution:

For the class having class mark 22, Let L be the lower class limit and H be the upper class limit.

Class Mark = \(\displaystyle \frac{\text{Upper Class Limit + Lower Class Limit}}{2}\)

\(\displaystyle \therefore 22 = \frac{H + L}{2}\)

\(\displaystyle \therefore 22 \times 2 = H + L\)

\(\displaystyle \therefore 44 = H + L\)

i.e. H + L = 44 ... (i)

And Class Width = 28 − 26 = 26 − 24 = 24 − 22 = 2

∴ H − L = 2 ... (ii)

Adding (i) and (ii):

H + L = 44 ... (i)
+ H L = 2 ... (ii)
2H = 46

\(\therefore \displaystyle H = \frac{46}{2}\)

∴ H = 23 ... (iii)

Substituting the value of H in (i):

 H + L = 44

∴ 23 + L = 44

∴ L = 44 − 23

∴ L = 21 ... (iv)

∴ The first class is 21 - 23

∴ The other classes are: 23 - 25, 25 - 27, 27 - 29

∴ The exclusive classes are as follows:

Class Class Mark Frequency
21 - 23 22 6
23 - 25 24 7
25 - 27 26 13
27 - 29 28 4

And the inclusive classes are:

Class Class Mark Frequency
21.5 - 22.5 22 6
23.5 - 24.5 24 7
25.5 - 26.5 26 13
27.5 - 28.5 28 4
29.5 - 30.5 30 ...

(8) In a school, 46 students of 9th standard, were told to measure the lengths of the pencils in their compass-boxes in centimeters. The data collected was as follows:

16, 15, 7, 4.5, 8.5, 5.5, 5, 6.5, 6, 10, 12, 13, 4.5, 4.9, 16, 11, 9.2, 7.3, 11.4, 12.7, 13.9, 16, 5.5, 9.9, 8.4, 11.4, 13.1, 15, 4.8, 10, 7.5, 8.5, 6.5, 7.2, 4.5, 5.7, 16, 5.7, 6.9, 8.9, 9.2, 10.2, 12.3, 13.7, 14.5, 10

By taking inclusive classes 0-5, 5-10, 10-15.... prepare a grouped frequency distribution table.

Solution:

The completed table is given below:

Class Tally Marks Frequency (f)
0 - 5 \(\enclose{downdiagonalstrike}{||||}\)  5 
5 - 10 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\)  20 
10 - 15 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\)  15 
15 - 20 \(\enclose{downdiagonalstrike}{||||} |\)  6 
\(\displaystyle N = \sum{f} = 46\)

(9) In a village, the milk was collected from 50 milkmen at a collection center in litres as given below:

27, 75, 5, 99, 70, 12, 15, 20, 30, 35, 45, 80, 77, 90, 92, 72, 4, 33, 22, 15, 20, 28, 29, 14, 16, 20, 72, 81, 85, 10, 16, 9, 25, 23, 26, 46, 55, 56, 66, 67, 51, 57, 44, 43, 6, 65, 42, 36, 7, 35.

By taking suitable classes, prepare a grouped frequency distribution table.

Solution:

The completed table is given below:

Class Tally Marks Frequency (f)
0 - 10 \(\enclose{downdiagonalstrike}{||||}\)  5 
10 - 20 \(\enclose{downdiagonalstrike}{||||} ||\)  7 
20 - 30 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\)  10 
30 - 40 \(\enclose{downdiagonalstrike}{||||}\)  5 
40 - 50 \(\enclose{downdiagonalstrike}{||||}\)  5 
50 - 60 \(||||\)  4 
60 - 70 \(|||\)  3 
70 - 80 \(\enclose{downdiagonalstrike}{||||}\)  5 
80 - 90 \(|||\)  3 
90 - 100 \(|||\)  3 
\(\displaystyle N = \sum{f} = 50\)

(10) 38 people donated to an organisation working for differently abled persons. The amounts in rupees were as follows:

101, 500, 401, 201, 301, 160, 210, 125, 175, 190, 450, 151, 101, 351, 251, 451, 151, 260, 360, 410, 150, 125, 161, 195, 351, 170, 225, 260, 290, 310, 360, 425, 420, 100, 105, 170, 250, 100.

(i) By taking classes 100-149, 150-199, 200-249 ... prepare a grouped frequency distribution table.
(ii) From the table, find the number of people who donated ₹ 350 or more.

Solution:

(i) The completed table is given below:

Class Tally Marks Frequency (f)
100 - 149 \(\enclose{downdiagonalstrike}{||||} ||\)  7 
150 - 199 \(\enclose{downdiagonalstrike}{||||}\enclose{downdiagonalstrike}{||||}\)  10 
200 - 249 \(|||\)  3 
250 - 299 \(\enclose{downdiagonalstrike}{||||}\)  5 
300 - 349 \(||\)  5 
350 - 399 \(||||\)  4 
400 - 449 \(||||\)  4 
450 - 499 \(||\)  2 
500 - 549 \(|\)  1 
\(\displaystyle N = \sum{f} = 38\)

(ii) The number of people who donated ₹ 350 or more= 4 + 4 + 2 + 1 + = 11.




This page was last modified on
27 January 2026 at 10:25

© 1976 - 2026 Patwardhan Class, All Rights Reserved
  Patwardhan Class ... First Class!!!