Examples for Practice
Home
Courses
Location
Contacts
Prove the following:
2 Marks Each
c
o
s
e
c
θ
1
−
c
o
s
2
θ
=
1
s
e
c
θ
1
−
s
i
n
2
θ
=
1
(
c
o
s
e
c
θ
−
c
o
t
θ
)
2
=
1
+
c
o
s
θ
1
−
c
o
s
θ
⟮
s
i
n
A
+
c
o
s
e
c
A
⟯
2
+
⟮
c
o
s
A
+
s
e
c
A
⟯
2
=
7
+
t
a
n
2
A
+
c
o
t
2
A
(
c
o
s
e
c
A
–
s
i
n
A
)
(
s
e
c
A
–
c
o
s
A
)
=
1
t
a
n
A
+
c
o
t
A
s
i
n
θ
1
−
c
o
s
θ
=
c
o
s
e
c
θ
+
c
o
t
θ
t
a
n
θ
−
c
o
t
θ
=
2
s
i
n
2
θ
−
1
s
i
n
θ
c
o
s
θ
Prove the following:
3 Marks Each
1
+
c
o
s
θ
1
−
c
o
s
θ
=
c
o
s
e
c
θ
+
c
o
t
θ
1
−
c
o
s
θ
1
+
c
o
s
θ
=
c
o
s
e
c
θ
−
c
o
t
θ
s
e
c
A
+
t
a
n
A
=
1
+
s
i
n
A
1
−
s
i
n
A
s
e
c
2
θ
−
c
o
s
2
θ
=
s
i
n
2
θ
(
s
e
c
2
θ
+
1
)
c
o
s
4
θ
−
c
o
s
2
θ
=
s
i
n
4
θ
−
s
i
n
2
θ
Back
This page was last modified on
23 May 2020 at 23:17
⇈